Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2009.07403v1

ABSTRACT

Coronavirus disease 2019, or COVID-19 in short, is a zoonosis, i.e., a disease that spreads from animals to humans. Due to its highly epizootic nature, it has compelled the public health experts to deploy smartphone applications to trace its rapid transmission pattern along with the infected persons as well by utilizing the persons' personally identifiable information. However, these information may summon several undesirable provocations towards the technical experts in terms of privacy and cyber security, particularly the trust concerns. If not resolved by now, the circumstances will affect the mass level population through inadequate usage of the health applications in the smartphones and thus liberate the forgery of a catastrophe for another COVID-19-like zoonosis to come. Therefore, an extensive study was required to address this severe issue. This paper has fulfilled the study mentioned above needed by not only discussing the recently designed and developed health applications all over the regions around the world but also investigating their usefulness and limitations. The trust defiance is identified as well as scrutinized from the viewpoint of an end-user. Several recommendations are suggested in the later part of this paper to leverage awareness among the ordinary individuals.


Subject(s)
COVID-19
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-60301.v2

ABSTRACT

Public health-related misinformation spread rapidly in online networks, particularly, in social media during any disease outbreak. Misinformation of coronavirus disease 2019 (COVID-19) drug protocol or presentation of its treatment from untrusted sources have shown dramatic consequences on public health. Authorities are utilizing several surveillance tools to detect, and slow down the rapid misinformation spread online, still millions of misinformation are found online. However, there is no currently available tool for receiving real-time misinformation notification during online health or COVID-19 related inquiries. Our proposed novel combinational approach, where we have integrated machine learning techniques with novel search engine misinformation notifier extension (SEMiNExt), helps to understand which news or information is from unreliable sources in real-time. The extension filters the search results and shows notification beforehand; it is a new and unexplored approach to prevent the spread of misinformation. To validate the user query, SEMiNExt transfers the data to a machine learning algorithm or classifier which predicts the authenticity of the search inquiry and sends a binary decision as either true or false. The results show that the supervised learning algorithm works best when 80% of the data set have been used for training purpose. Also, 10-fold cross-validation demonstrate a maximum accuracy and F1-score of 84.3% and 84.1% respectively for the Decision Tree classifier while the K-nearest-neighbor (KNN) algorithm shows the least performance. The SEMiNExt approach has introduced the possibility to improve online health communication system by showing misinformation notifications in real-time which enables safer web-based searching while inquiring on health-related issues.


Subject(s)
COVID-19 , Learning Disabilities
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2007.13633v1

ABSTRACT

Without proper medication and vaccination for the COVID-19, many governments are using automated digital healthcare surveillance system to prevent and control the spread. There is not enough literature explaining the concerns and privacy issues; hence, we have briefly explained the topics in this paper. We focused on digital healthcare surveillance system's privacy concerns and different segments. Further research studies should be conducted in different sectors. This paper provides an overview based on the published articles, which are not focusing on the privacy issues that much. Artificial intelligence and 5G networks combine the advanced digital healthcare surveillance system; whereas Bluetooth-based contact tracing systems have fewer privacy concerns. More studies are required to find the appropriate digital healthcare surveillance system, which would be ideal for monitoring, controlling, and predicting the COVID-19 trajectory.


Subject(s)
COVID-19
4.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2007.13182v1

ABSTRACT

Coronavirus disease 2019, i.e. COVID-19 has imposed the public health measure of keeping social distancing for preventing mass transmission of COVID-19. For monitoring the social distancing and keeping the trace of transmission, we are obligated to develop various types of digital surveillance systems, which include contact tracing systems and drone-based monitoring systems. Due to the inconvenience of manual labor, traditional contact tracing systems are gradually replaced by the efficient automated contact tracing applications that are developed for smartphones. However, the commencement of automated contact tracing applications introduces the inevitable privacy and security challenges. Nevertheless, unawareness and/or lack of smartphone usage among mass people lead to drone-based monitoring systems. These systems also invite unwelcomed privacy and security challenges. This paper discusses the recently designed and developed digital surveillance system applications with their protocols deployed in several countries around the world. Their privacy and security challenges are discussed as well as analyzed from the viewpoint of privacy acts. Several recommendations are suggested separately for automated contact tracing systems and drone-based monitoring systems, which could further be explored and implemented afterwards to prevent any possible privacy violation and protect an unsuspecting person from any potential cyber attack.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL